\qquad

C. U. SHAH UNIVERSITY Summer Examination-2022

Subject Name: Graph Theory

Subject Code: 4SC06GRT1
Branch: B.Sc. (Mathematics)
Semester: 6
Date: 07/05/2022
Time: 02:30 To 05:30
Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a) Define: Simple graph
b) The degree of each vertex in complete graph K_{n} is
(a) $\mathrm{n}-1$
(b) $n+1$
(c) $2 n$ (d) n
c) Degree of pendant vertex is \qquad .01
(a) 3 (b) 2
(c) 1
(d) 0
d) Define: Tree01
e) State Dirac's theorem 02
f) Prove that a binary tree has always odd number of vertices. 02
g) Define: Branches and chords of graph. 01
h) Find rank and nullity for complete graph K_{n}. 02
i) Define: Edge connectivity of a graph. 01
j) Define: Maximal Hamiltonian graph. 01
k) Define: Fundamental Circuit 01
Attempt any four questions from Q-2 to Q-8
Q-2 Attempt all questions(14)
a) State and prove first theorem of graph theory. Also prove that graph G 07must have even number of odd vertices.b) Let $G=(V, E)$ be a graph where $V=\{a, b, c, d, e\}$ and07$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$ and correspondence between elements of Vand E are $e_{1}=a b, e_{2}=b c, e_{3}=c c, e_{4}=c d, e_{5}=b d, e_{6}=d e, e_{7}=$be then represent G as graphically and give the answer of followingquestions
(i) Find isolated vertex of G
(ii) Find pendent vertex of G
(iii) Find even and odd vertices of G.
(iv) Verify first theorem of graph theory.
(v) Verify that number of odd vertices in graph is even.

Attempt all questions
a) State and prove Euler's theorem.
b) Let $G=(V, E)$ be k - regular graph, where k is an odd number then prove that number of edges in graph is multiple of k.
c) Prove that number of edges in complete graph K_{n} is $\frac{n(n-1)}{2}$.
a) Define isomorphism of graphs. Show that the following graphs are isomorphic.

b) Find distance between every pair of vertices of G and eccentricity of every vertex.

c) Draw dodecahedron graph. Show that it is Hamiltonian graph.

Attempt all questions
a) Let G be a simple graph with n vertices and k components. Then prove that G can have at most $\frac{(n-k)(n-k+1)}{2}$ number of edges.
b) Let G be a tree with n vertices. Then prove that G has $(n-1)$ edges.
c) Let G be acyclic graph with n vertices and k components then prove that G has $n-k$ edges.

Attempt all questions
a) Let n be an odd number, $n \geq 3$. Then prove that there are exactly $\frac{n-1}{2}$ edge-disjoint Hamiltonian circuit in complete graph K_{n}.
b) If the number of vertices is n in binary tree then prove that the number of pendant vertices is $\frac{n+1}{2}$.
c) Find all cut set of following graphs.

Q-7 Attempt all questions
a) State and prove necessary and sufficient condition for disconnected graph.
b) Prove that a graph G is tree if and only if it is minimal connected graph. 05
c) Define: Fusion graph. Find a fusion graph of the following graph by 03 fusing the vertices F and H .

Q-8 Attempt all questions
a) Without drawing graph check whether the graph corresponding to following adjacency matrix is connected or not.

$$
X=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

b) Write adjacency and incidence matrices of the adjacent graph:

