Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY **Summer Examination-2022**

Subject Name: Graph Theory

Subject Cod	e: 4SC06GRT1	Branch: B.Sc. (Mathematics)		
Semester: 6	Date: 07/05/2022	Time: 02:30 To 05:30	Marks: 70	
(1) Use	of Programmable calculator & any of	her electronic instrument is p	rohibited	
(1) (2) (2) (2) (2)	uctions written on main answer book	are strictly to be obeyed.	iomonea.	
(3) Drav	w neat diagrams and figures (if necess	ary) at right places.		
(4) Assu	me suitable data if needed.			
Q-1	Attempt the following questions:		(14)	
a)	Define: Simple graph		01	
b)	The degree of each vertex in comple	te graph K_n is	01	
	(a) $n - 1$ (b) $n + 1$ (c) $2n$ (d) n			
c)	Degree of pendant vertex is	·	01	
-	(a) 3 (b) 2 (c) 1 (d) 0			
d)	Define: Tree		01	
e)	State Dirac's theorem		02	
f)	Prove that a binary tree has always o	dd number of vertices.	02	
g)	Define: Branches and chords of grap	h.	01	
h)	Find rank and nullity for complete g	raph K_n .	02	
i)	Define: Edge connectivity of a graph	1.	01	
j)	Define: Maximal Hamiltonian graph		01	
k)	Define: Fundamental Circuit		01	

Attempt any four questions from Q-2 to Q-8

Q-2 a) b)	Attempt all questions	(14)	
	a)	State and prove first theorem of graph theory. Also prove that graph G	07
		must have even number of odd vertices.	
	b)	Let $G = (V, E)$ be a graph where $V = \{a, b, c, d, e\}$ and	07
		$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$ and correspondence between elements of V	
		and <i>E</i> are $e_1 = ab$, $e_2 = bc$, $e_3 = cc$, $e_4 = cd$, $e_5 = bd$, $e_6 = de$, $e_7 = bd$	
		be then represent G as graphically and give the answer of following	
		questions	
		(i) Find isolated vertex of G	
		(ii) Find pendent vertex of G	
		(iii) Find even and odd vertices of G.	
	(iv) Verify first theorem of graph theory.		
		(v) Verify that number of odd vertices in graph is even.	

Q-3	Attempt all questions	(14)
a)	State and prove Euler's theorem.	06
b)	Let $G = (V, E)$ be k – regular graph, where k is an odd number then	04
	prove that number of edges in graph is multiple of k.	
c)	Prove that number of edges in complete graph K_n is $\frac{n(n-1)}{2}$.	04

Q-4 Attempt all questions

a) Define isomorphism of graphs. Show that the following graphs are isomorphic.

b) Find distance between every pair of vertices of *G* and eccentricity of 05 every vertex.

	c)	Draw dodecahedron graph. Show that it is Hamiltonian graph.	04
Q-5		Attempt all questions	(14)
	a)	Let <i>G</i> be a simple graph with <i>n</i> vertices and <i>k</i> components. Then prove that <i>G</i> can have at most $\frac{(n-k)(n-k+1)}{2}$ number of edges.	05
	b)	Let G be a tree with n vertices. Then prove that G has $(n-1)$ edges.	05
	c)	Let G be acyclic graph with n vertices and k components then prove that G has $n - k$ edges.	04
Q-6 a) b)		Attempt all questions	(14)
	a)	Let <i>n</i> be an odd number, $n \ge 3$. Then prove that there are exactly $\frac{n-1}{2}$ edge-disjoint Hamiltonian circuit in complete graph K_n	07
	b)	If the number of vertices is <i>n</i> in binary tree then prove that the number of pendant vertices is $\frac{n+1}{2}$.	04

(14)

05

c) Find all cut set of following graphs.

Q-7 Attempt all questions

(14)

- a) State and prove necessary and sufficient condition for disconnected graph. 06
- b) Prove that a graph G is tree if and only if it is minimal connected graph. 05
- c) Define: Fusion graph. Find a fusion graph of the following graph by 03 fusing the vertices F and H.

Q-8 Attempt all questions

a) Without drawing graph check whether the graph corresponding to following adjacency matrix is connected or not.07

$$X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

b) Write adjacency and incidence matrices of the adjacent graph:

(14)